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Despite their low barrier of entry and versatility, Unmanned Aerial Vehicles (UAVs) still have not seen
widespread adoption in some critical applications, such as Search and Rescue (SAR) missions in challenging
environments. With this in mind, the primary goal of our team was to develop a proof-of-concept UAV system
that can autonomously survey a designated area and accurately detect and report the locations of target objects,
using off-the-shelf components and existing software frameworks. Throughout the quarter, we successfully
implemented a prototype for this autonomous SAR task, which leverages state-of-the-art computer vision and
path planning algorithms to enable robust object detection, localization, and spatial mapping capabilities. Our
prototype system can serve as a foundation that our sponsors, TritonAl, can easily extend into a complete,
competition-ready solution for the upcoming RobotX Maritime Challenge, showcasing the potential of
autonomous UAVs for critical SAR operations in real-world maritime environments. By participating in
RobotX, our team aims to push the boundaries of autonomous multi-domain vehicle technologies while
gaining invaluable experience in system integration, deployment, and evaluation under realistic contraints -
paving the way for future SAR innovations that can save lives.

1 Introduction

Fig. 1. Our completed SAR UAV prototype

The field of Unmanned Aerial Vehicles (UAVs), commonly referred to as drones, has experienced
remarkable advancements in recent years, fueled by rapidly declining costs and increased accessi-
bility. While initially perceived as a hobbyist pursuit, the potential applications of UAVs in critical
domains such as search and rescue (SAR) operations have gathered significant attention. However,
despite their inherent advantages, the adoption of UAVs in SAR efforts has been relatively slow,
primarily due to technological limitations and regulatory concerns.
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Search and rescue operations, particularly in challenging environments such as mountainous
regions or vast oceans, pose immense risks to human personnel. Treacherous terrain, unpredictable
weather conditions, and the urgency of locating missing individuals or survivors compound the
challenges faced by rescue teams. UAVs present a compelling solution, offering a safer and more
efficient means of conducting aerial surveys, locating victims, and delivering essential supplies to
remote or hazardous areas.

Recognizing the immense potential of UAV technology in SAR scenarios, the RobotX Challenge,
a prestigious student competition, has incorporated a Search and Report task as one of its key
components. This task simulates a real-world SAR operation, where the contestant UAV must
autonomously search a designated area, identify and locate two predetermined objects, and report
their precise locations to ground control. The successful execution of this task requires a synergistic
integration of various cutting-edge technologies, including computer vision, sensor fusion, and
robust object detection and localization.

Our team, in collaboration with the Triton Al lab, has embarked on an ambitious endeavor to de-
velop a UAV system capable of excelling in the RobotX Challenge’s Search and Report task. Through
meticulous research, innovative engineering, and rigorous testing, we have made significant strides
in addressing the multifaceted challenges associated with this undertaking. The key contributions
of our work can be summarized as follows:

(1) Development of a highly optimized object detection and localization pipeline tailored for
real-time performance on embedded systems, leveraging state-of-the-art computer vision
techniques.

(2) Integration of advanced computer vision algorithms to accurately determine the UAV’s
position and orientation, enabling precise object localization within the designated search
area through effective sensor fusion.

(3) Implementation of efficient autonomous navigation strategies to ensure comprehensive
area coverage and optimal resource utilization during the search operation.

(4) Establishment of a reliable communication framework for seamless data exchange between
the UAV, and companion computer systems.

Our task, as presented in this report, is to build a prototype using off-the-shelf components that
demonstrates effective strategies for approaching the Search and Report challenge, enabling the
TritonAl team to adapt and scale our solutions to their larger drone for the competition.

By addressing these critical aspects, our work aims to push the boundaries of UAV technology in
SAR applications, paving the way for more effective and safer rescue operations. The successful
demonstration of our system’s capabilities in the RobotX Challenge will not only showcase our
team’s technical prowess but also the potential of UAVs as invaluable tools in saving lives and
mitigating the risks faced by human personnel in high-stakes rescue scenarios.

2 Related Work

In the 2022 RobotX competition [8], TritonAI’s drone team participated in the competition for the
same Search and Report task and for the 2024 competition we chose to take things in a different route.

We took inspiration from the 2022 competition winners Embry Riddle’s pipeline architecture
[2] for a few improvements to our pipeline task, specifically pertaining to the pipeline ordering.
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We looked for a modular, off the shelf drone and we found the S500 [7]. The S500 allowed for quick
prototyping and iterating. We built the S500 using DroneCode’s [5] guide since their compute
module needs aligned with ours.

For the 2022 version the drone team elected to implement a camera on the drone but offload
the processing to later [1]. We chose to build in a Jetson Nano compute module for live data
acquisition and processing. This is both something we took inspiration from the 2022 winner team
and something we found to better fit our tracking goals.

For image capturing and processing we implemented 2 distinct scripts: one leveraging NVIDIA’s
nvgstcapture tool [4] for offline camera module testing, and another utilizing OpenCV for real-time
image capture within the processing pipeline [6]. These scripts facilitated robust image processing
capabilities essential for the task.

The control system was based on the Ardupilot software running on a Pixhawk module, con-
figured to emulate the Betaflight rotor setup. Communication with the onboard systems was split
into two distinct methods: (1) SSHFS for interfacing with the Jetson Module. The SSHFS was chosen
because of interoperability with macOS and windows and live update to the system [10] and (2)
Radio control for flight controller.

The previous team had utilized a dual-camera setup with YoloV5 for object detection[1]. In addition
to that, we researched current object detection status quo and many include Xin Wu et. all. [21]
seemed to suggest Yolo models so decided to try the latest Yolo model for our object detection tasks.
However, the Jetson Module proved incapable of processing the data in real time so we elected to
use CV algorithms based for quick processing. We analyzed different approaches to this problem
and found three suitable algorithms — Scale Invariant Feature Transform (SIFT) [15], Speeded
Up Robust Features (SURF) [9] and Oriented FAST and rotated BRIEF (ORB) [16]. After compar-
ing the accuracy and efficiency of the aforementioned algorithms, we decided to proceed using SIFT.

Additionally, we had to enhance the accuracy of our detection, as we needed precise corner
coordinates in the image to get a sufficient accuracy in the localization part. We used the Multiple
View Geometry in Computer Vision [14] book to choose the most suitable methods for our problem.
We decided to use Optimal Corners algorithm [17], enhanced with subpixel accuracy [20] for our
corner detection, as well as OpenCV ’findContours’ algorithm [18]. We completed those with our
authored algorithms, like one to match detected polygons with detected corners.

For object localization, we researched various algorithms, including Single/Two/n-View-Geometry
Algorithms from the aforementioned book [14], but also considered using Simultaneous Localiza-
tion and Mapping algorithm [12]. We settled on and used the Perspective-n-Point (PnP) algorithm,
using the IPPE-SQUARE method [11], which, by processing camera pose and pixel coordinates,
efficiently generated camera-relative coordinates of targets.

To enhance data reliability, we adopted the Random Sample Consensus (RANSAC) algorithm
[13]. RANSAC enables us to remove outlier data and this is applied in addition to the internal
RANSAC used in OpenCV’s homography computation function [3]. We used these to clean up the
signal, which wasn’t necessary for the previous teams as they employed machine learning models
that ran offline.
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In addition to the tasks we’ve already completed, we are exploring various SLAM algorithms
to adapt the drone to "kidnapped robot" scenarios. Preliminary research indicate that EKF-SLAM
may be the most promising approach for our needs [19].

3 Technical Details
3.1 Competition Spec
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Fig. 2. Challenge Task

The RobotX Maritime Challenge is a biennial competition aimed at expanding the community
of researchers and innovators working on autonomous and unmanned multi-domain vehicles.
Teams from around the world design, build, and program an Autonomous Maritime System (AMS)
to attempt various challenges that test capabilities across the maritime and aerial domains. The
competition requires teams to demonstrate their AMS’s full autonomy, situational awareness, and
ability to seamlessly operate as an integrated multi-domain system.

A key technical focus area is autonomous deployment and control of unmanned aerial vehicles
(UAVs) from the unmanned surface vessel (USV). This showcases advancements in areas like UAV
launch and recovery, autonomous aerial navigation, object detection/tracking, and coordination
between maritime and aerial systems. Specific tasks include the UAV Replenishment challenge
where the UAV must locate a floating helipad, collect a colored object, deliver it to another helipad,
and return to the USV.

The UAV Search and Report task specifically evaluates Search and Rescue (SAR) capabilities crucial
for maritime operations. The UAV must autonomously launch, conduct an aerial search over a
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designated field area, detect and determine the precise locations of two distinct objects simulating
SAR targets, and accurately report those locations back to the judges. Successfully completing this
showcases integrated maritime/aerial autonomous systems with robust perception, navigation, and
situational awareness for time-critical SAR scenarios. Teams must pass all mandatory inspections
and demos before attempting this capstone SAR task in the competition rounds.

3.2 UAV Assembly

Building the physical drone was a challenging yet rewarding process. We started by carefully
following the instructions provided by the manufacturer to assemble the frame and mount the
various components. Particular attention was given to ensuring a secure and stable placement of
the critical parts like the flight controller, motors, and electronic speed controllers.

One area that required some extra effort was the soldering of connections. With multiple wires
and delicate circuits involved, we had to exercise caution and precision to avoid any short circuits
or loose joints. Emmanuel’s prior experience with soldering came in handy here, and he guided
the rest of us through this intricate task. Once the core assembly was complete, we methodically
integrated the remaining peripherals such as the telemetry module, GPS, and camera. Proper cable
management and routing were crucial to prevent any interference or disconnections during flight.

Fig. 4. Second stage of drone build

Throughout the assembly process, we consulted the expertise of the TritonAl team and incorporated
their valuable feedback. Their recommendations on hardware selection and configuration were
invaluable in ensuring a robust and airworthy drone.
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3.3 Hardware

At the heart of our UAV system lies the Pixhawk flight controller, a powerful and versatile autopilot
module. Pixhawk not only governs the drone’s movement and stability but also serves as a central
hub for gathering data from various onboard sensors.

The Inertial Measurement Unit (IMU) plays a pivotal role in tracking the drone’s orientation
and movement. By continuously monitoring acceleration and rotational rates, the IMU provides
crucial inputs for maintaining stable flight and accurate navigation. For precise location tracking,
we rely on the Global Positioning System (GPS) module. This module receives signals from orbiting
satellites, enabling us to pinpoint the drone’s coordinates with a high degree of accuracy — a critical
requirement for our object localization task.

Capturing visual data is the responsibility of the wide-angle camera mounted on the drone. This
camera feeds real-time imagery to our object detection and localization algorithms running on
the Jetson Nano companion computer. The Jetson Nano itself is a remarkable piece of hardware,
packing significant computing power into a compact and energy-efficient form factor. Its also has
parallel processing capabilities which will allow us to run our computationally intensive computer
vision algorithms with minimal latency, ensuring smooth and responsive operation.

Establishing reliable communication between the various components was a challenging pro-
cess. We leveraged the MAVLink protocol to enable bidirectional data exchange between the
Pixhawk and the Jetson Nano. This link not only allowed us to retrieve telemetry data but also
provided a channel for sending navigation data. With this robust hardware infrastructure in place,
our UAV system is well-equipped to undertake the demanding tasks of autonomous object detection,
localization, and ultimately, participation in the RobotX Challenge.
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Fig. 5. Hardware communication model

3.4 Software

The goal is to periodically capture the readings from the onboard sensors, perform object detection
to find the targets, estimate their real-world coordinates, and then finally report them to the ground
station.
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Capturing Environment

The main sensor sources that we use are the onboard cameras and the sensor readings from
the autopilot module, in particular the GPS, IMU and orientation information. In order to achieve
low-latency, we keep maintain a separate thread for both the camera and the autopilot and save
the latest reading to memory. We make sure that the camera and autopilot reading happen ideally
at the same time for better accuracy. We save this information for later use and the captured frame
is then sent to the target detection section.

Target Detection

When our pipeline starts, we first load the target reference images for target detection. This
allows us to load them once and keep them in memory which gives us a massive performance boost.
Our target detection CV algorithm is an image matching algorithm, broken down into two steps:

a) Feature Extraction
b) Feature Matching

For feature extraction, we use the SIFT algorithm. We tested SURF, SIFT, and ORB algorithms. We
found out that SIFT offers a nice balance of ease of use, speed, and transformational invariance. For
improved efficiency, we extract features only once per reference image and per camera image, since
it’s a computationally expensive operation. We then reuse those features for every reference-camera
image pair.

For feature matching, we use KNN, making sure that the best match is significantly better than
the second-best match. This helps us remove false positives, which were a big source of confusion
between the two (pretty similar) reference images. Our previous method was based on a different
matching algorithm which we had to abandon specifically for this reason.

Fig. 6. Steps of object localization

Once the features were extracted and the objects were detected, the target detector would return
the image coordinates of the detected targets’ corners. However, these results are still noisy, so the
next step is to detect potential target outlines in the image, by finding the contours in the image
and limiting them to realistically sized quadrilaterals. We then match every detected target to the
closest polygon in the image, fixing any inaccuracies in the corner localization. Then, we detect
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corners with a subpixel accuracy to even more enhance our precision.
This data, having a near-perfect precision, is then sent to the localization pipeline.
Target Localisation

Using the drone pose from the IMU, the GPS coordinates of the images, the GPS coordinates
of the boundary, and the image coordinates of the detected images, we’re able to localize the actual
GPS coordinates of the targets using 3D view reconstruction.

We use the Perspective-n-Point algorithm to get the camera position relative to the target 3D
position (since we know the target dimensions, we set the target in the origin of the 3D space).
Then, knowing the real camera pose, we calculate the real 3D pose of the target (specifically, its
center).

We then send this information to our aggregation module.

Data Aggregation and Reporting

We collect a lot of data points, but we still have to average them. Since not all the readings
are correct (sometimes we detect or localize targets incorrectly), we have to remove the outliers. We
use the RANSAC algorithm, assuming a reasonable error for our readings and removing anything
above that (as since all the false detections appear in random places, they get localized very far
away).

Fig. 7. Steps of results aggregation

After removing the outliers, we can average the results to get a precise estimate of the real-world
location. We can then finally send it to the base.

4 Milestones
4.1 Hardware

Drone Assembly

The initial milestone was to assemble the drone, which we completed successfully. We installed,
connected and secured all components, including the fight controller, motors, and other electronics.
We also organized the cables really well to prevent any potential interference or disconnection
during flight. This was foundational step as it ensured that the drone was in really good structural
condition and ready for further integration. One of the crucial part during drone assembly was
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soldering connections given the delicate nature of circuits we had to make sure we connected
everything properly and securely. Emmanuel’s prior experience with soldering came in handy
during this phase. As his guidance helped us ensure that all the connection were robust, minimizing
any risk of short circuits or loose joints, making the drone more reliable during operating it. Due
to the critical nature of this part it really made this process time consuming and led to multiple
retries to achieve really good connections.

What we presumed to take us a day, took us four weeks to complete, proving that assembling a
working drone even under the support of experts isn’t an easy task. We were promised a working
drone, so having to assemble one put us strongly off track, and therefore, we had to give up on
some goals we wanted to achieve, such as autonomous flight (in case of any serious crash, we
would no more have a drone to work on) and border detection.

During our testing, we had a minor crash, but we worked around that. One of our wings is
still temporarily fixed, proving how good the drone is, as even with such a flaw, it is flying very well.
This incident showcases the robustness and reliability of our drone design and the effectiveness of
our assembly process.

Another issue we faced after our minor crash was that the battery started to die halfway through
our testing sessions, forcing us to work with the other team’s battery. We are really grateful for
their help and support, which allowed us to continue testing without major interruptions. This
experience highlights the importance of collaboration and mutual support within the robotics
community.

Camera & Companion Computer Integration

We mounted a wide-angle camera on the drone to capture visual data. This camera played a
key role in our project as it fed real-time image data to our object detection and localization algo-
rithms running on the Jetson Nano. Ensuring that the camera was securely installed and didn’t
have any unnecessary movement was a crucial step towards enabling accurate data capture.

Integrating the Jetson Nano companion computer with the drone was another significant milestone.
We successfully connected the Jetson Nano to the drone, enabling seamless communication between
the two systems. The Jetson Nano can now gather essential data from the drone, such as GPS
coordinates and IMU readings, powering to make error free decisions.

Putting it all together:

(1) With all the components installed, connected, and tested, we now have a fully functional
and flight-ready drone. We can fly the drone using our remote control without any issues,
showcasing the success of our assembly process.

(2) The successful integration of the Jetson Nano with the drone enables bi-directional commu-
nication. The Jetson Nano can retrieve crucial data from the drone’s sensors, such as GPS
coordinates and IMU readings, while also sending commands to control various aspects of
the drone’s operation.
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(3) By establishing control over the camera through the Jetson Nano, we have completed the
hardware pipeline necessary for our MVP. We can now capture images during flight, which
is essential for gathering the data required to localize objects in the real world.

(4) To ensure that our hardware setup meets the requirements and standards set by the Tri-
tonAl team, we have confirmed the final build with their mentors. This validation from
experts in the field gives us confidence in the robustness and reliability of our drone platform.

These hardware milestones show the progress we’ve made in terms of assembling a fully func-
tional drone, integrating the Jetson Nano companion computer, enabling camera control, and
gathering crucial data for object detection and localization. The collaborative efforts of our team,
along with the valuable input from the TritonAl mentors, have been really helpful in achieving
these milestones.

4.2 Software

Hardware support

We fully completed all milestones related to hardware support. We have software that can commu-
nicate with hardware in all matters, starting with reading the GPS values and ending with capturing
images with the camera. Also all our software is running on the compation computer (Jetson Nano)
without any issues

Object detection

Object detection was a tricky part, as it was tempting to overkill the problems with a big powerful
ML model as many other teams did. We also initially thought of doing that, so we adapted a simple
Yolo model to detect objects. We started with detecting some pretrained objects from real life and
quickly ran into a problem where running this algorithm on Jetson Nano would be slow. Our
computing unit would freeze for around 5 seconds to perform detection on a single photo. As we
wanted to compute way more than a single detection and needed a decent efficiency, we started
looking for alternative solution. We looked at computer vision and found three potential algorithms
to use — SIFT, SURF and ORB. Out of these free, SIFT became our choice, as a very fast, robust and
rotation invariant algorithm - exactly what we needed. ORB calculated results pretty fast as well,
however its results were hard to interpret in the way we needed to, however SURF would have
licensing problems if we ever wanted to use it for more serious purposes. And this way we ended
with SIFT as our main object detection algorithm.

However SIFT, while detecting the target images with pretty good accuracy, did not know how to
place the target corners properly in the image - the thing we needed the most. Therefore it became
clear that we have to detect corners separately, and then match the corners closest to the SIFT
detection as the output ones. It turned out that detecting corners in the image is way more difficult
that one might have imagined. Simple corner detection algorithms were very noise prone and
worked with different efficiency between different photos, or even different parts of the same photo.
Finally, our best result was finding optimal features for corner matching, which is an algorithm
that for each window of a given size selects the best corner in it, allowing for a fair distribution of
the corners throughout the picture. Unfortunately, while yielding decent results, this algorithm
would still miss a corner in place of some noisy bit of grass for around 20% of targets, so we needed



UAV Search & Report 111:11

Workflow
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Fig. 8. SIFT Workflow

an even better solution. We found an OpenCV algorithm for contour detection, that would help
us detect polygons. This algorithm is way less prone to noise, as there are very few reasonable
polygons in the image. The only problem with this algorithm is that it requires image thresholding,
which can stop working for different lighting conditions, so requires tuning to the background and
sun level. However, it turned out to be working very well for most of our test flights. Our final
solution finds optimal corners as well as polygons. It is possible to turn off the polygon part, which
makes the results worse but works no matter what backgorund and lighting condition we are in. It
uses optimal corners if any matches the polygon corner (up to some error), otherwise assume that
the polygon corner (which is less accurate then the optimal corner) is the ground truth. Finally, it
calculates the corners up to sub-pixel accuracy to just slightly even more push the precision. This
way we get very accurate target corners in the image.

Last part worth noting is the efficiency. Some of the used algorithms, such as key feature de-
tection and contour detection, are pretty slow. Therefore, we run those once for every photo, and
reuse for every target searched. Additionally, for target images, we load and preprocess them at
the beginning of the pipeline. This way we can calculate their features very accurately and not
worry about the time loss. Combining all these optimization gives us the speed of one image per 4
seconds, which is a pretty good result, taking into the account how small Jetson Nano is and that
we did not install OpenCV with cuda.

Localization

For localization, we knew that we have the exact drone pose and the exact target corners in
the image, however coming with a way of getting the exact target location wasn’t easy. We were
initially thinking of using two view geometry, but this felt like an overkill, taking into the account
that we knew the drone pose and exact target shape. Then, we got inspired, that actually single view
geometry is enough to solve the problem, since we know the exact target dimensions. Our solution
was to place the object in 3D in the origin and using Perspective-n-Point algorithm, calculate the
relative position of the camera. This algorithm needs 3 points to find up to 4 solutions, with 4
points guaranteeing a unique solution. This way, knowing the transformation from the drone to
the target, and the drones pose, we can calculate the target’s real-world position.

An important part was that all the algorithms operate on meters, however any coordinates are in
angles. This required a conversion algorithm, which, while not being difficult, took some time to test
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and tune to a required accuracy. Thanks to this tool, we were able to retrieve the results in coordi-
nates, which enabled us to test our algorithm on real-world data gathered throughout our test flights.

The main difficulty in this part was that there is very little good documentation for the Perspective-
n-Point algorithm implemented in OpenCV. Specifically, the axis were very problematic, as OpenCV
sometimes (but not always) uses the Y axis pointing down instead of up. With this in mind, it was
difficult to interpret the results of the algorithm and took a bit of trial-and-error to find out the
correct transformation algorithm. But finally, after hours of debugging, we succeeded with the
transformation getting errors of up to 1 meter, a satisfactory result!

Aggregation

In the beginning, we did not even assume this would be a separate part. However, it quickly
became clear that not only we will have errors which have to get averaged out, but also achieving
a 100% of successful and correct image detections is almost impossible (and is so, would not detect
many less certain but still valuable targets locations in the images). Therefore, we decided to accept
more detections with a risk of false matches. To deal with this, we added an outlier rejection
algorithm — RANSAC. This ensured, that any serious false detections will be immediately discarded.
After applying that, we could safely average the rest of the results not worrying about singular
very incorrect detection visibly affecting our prediction. Thanks to that, we could leave our object
detection algorithm with a sub-100% accuracy and be calm that any mistakes made will not impact
out performance.

4.3 Abandoned

(1) One of the efficiency improvement we wanted to make was reinstalling OpenCV with
CUDA - making a better use of the GPU in our companion computer. However efficiency
was not our priority, especially hardware efficiency (since TritonAl would use a different
drone for the competition anyway). Because of that, we kept postponing this task as we
had more important things to work on, finally deciding to not do it at all. While it made us
spend more time for field testing (since we needed to fly the drone longer to get a similar
amount of photos), we believe investing the time we would spend reinstalling the libraries
and fixing CUDA problems into other tasks was a wise decision overall.

(2) We decided to abandon the autonomous drone flight. It is a complex part of the drone
system, which is fully managed by another TritonAl team. Our algorithm does not require
autonomous flight to work properly, but just a simple coverage algorithm, which can be
easily implemented by anyone. An important sidenote: We did implement the automation
routines for the control aspect of the drone, meaning we’re able to give commands such as
"hold altitude”, "move forward", etc. The only autonomous task that we haven’t implemented
is the autonomous navigation task. This is being focused by another TritonAl team, so we
elected to focus on making our detection and localisation far more robust that asked for.

(3) Communication with the base (Autonomous Maritime System) AMS system using radio was
a task that we initially had in mind as a stretch target, but we abandoned later. While trying
to implement the radio controls for the drone we discovered that the test radio platform
we had would differ significantly from the actual platform that would be present in the
competition. We felt that it would be a fruitless task to implement this for the sake of testing.
Since the AMS’ communication routines are not different from the previous system, the
TritonAl team could just plug that into the current system with little modification.
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5 Experiments
5.1 Field Tests

Fig. 9. Field Testing

We performed our tests in two flight sessions. We performed both sessions by first measuring
the ground truths (taking 10 gps readings with the drone standing on each target and averaging
them), and then performing a flight with full pipeline activated. We then analyzed the saved results
(potentially rerunning the pipeline locally to polish our algorithms). Since all the images and
readings were saved locally, we could use those to rerun the pipeline without the drone, therefore
being able to gather detailed statistics (which we will present later) that would take computational
time or were only possible to gather manually. During each flight, we took around 100-150 photos,
gathering around 40-50 inlier measurements of each target. We performed both sessions in different
parks and in different lighting conditions, achieving similar results, proving that our algorithm is not
tuned to a very specific environment, but generalizes well. Additional tests in water environment
(so in the competition setting) are to be made, but they will be concluded with the competition
drone by the TritonAl team.

5.2 Results

For hardware results, we managed to achieve a fully functional flying drone. The flight was very
stable, requiring little to no flight experience to pilot the drone.

We were able to get sensor reading in a speed of 30FPS, a result sufficient enough for any further
development. Our images are in a high (1960x1080) resolution and are not blurred even if the drone
is in flight.

Our object detection is very good, 90% or targets in the images. Most of the missed detections
are due to the target being very close to the image edge (and thus very distorted), sun glare on the
target or too high flight. Only 7% of all detections are false detections, most of them eliminated
during the image localization phase (as PnP algorithm claims that such a point configuration is
impossible), and the rest during the outlier rejection. Less than 3% if images are detected correctly,
but their corners are not placed correctly. This is the only really harmful case, but since it appears
so rarely, it can get easily averaged out.

Overall, we get a 1-meter accuracy when detecting locations, which is a result of taking 50 photos.
It’s worth noting that the GPS has a 1 meter error and IMU also has errors which we didn’t measure.
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Therefore, we believe that improving the efficiency and therefore taking more images of the targets
can dramatically improve the accuracy (for comparison, taking only 20 images pushed the error up
to 2-3 meters. Also, with more precise instruments in the competition drone, the results can get
even better. However, for the prototype we were meant to build, we are happy with this result.

Detection and inlier number during test flight Measurement error during test flight (log scale)

— inliers+outliers

—— inliers
40 101 4

Error (meters)

20 40 60 80 100 5 10 15 20 25 30 35 40
Photos taken Number of inliers

Fig. 10. Results

5.3 Future work

Here we cover next steps we would take as a team to even further improve our solution

(1)

(3)

Better localization — We used Single-View Geometry to solve the localization problem.
This completely ignores the fact that we not only have multiple measurements, but we
know our position changes between them. Assuming only multiple measurements, we
can use n-View Geometry to more precisely localize the targets in the real-world, since
this approach uses a more robust algorithm that minimizes a specialized error, this way
achieving better accuracy then averaging a lot of individual measurements. However, since
we also know how we change the position between measurements, we can use Simultaneous
Localization and Mapping (SLAM) algorithm to achieve even better results. SLAM will not
only take all the measurements into the account when localizing the targets, but also is
build to help mitigate GPS and IMU measurement errors, this way achieving a great way
to get a very precise measurement that by design handles measurement errors, not only
errors in our algorithms, but also errors in drone positioning and movement.

ROS Node - While we communicate with our drone through MAVROS, it isn’t a very
scalable solution. When running a few algorithms like our (for example when working on
few tasks during the competition), our latency will increase and we will have problems
with parallelization. A great solution for that is using Robot Operating System (ROS) -
converting our algorithm into a ROS node. This will make our algorithm run in parallel,
easily access all the necessary readings in real-time and not interfere with other potential
algorithms running on the drone.

Coverage algorithm - While we did not implement autonomous flight, it is an important
thing that should be addressed sooner than later. Specifically, we need our drone to cover a
designated area, so a suitable coverage algorithm is needed. As a step further, an adaptive
algorithm, that after detecting targets in given locations focuses on nearby area to gather
more inlier detections and get a better estimate, rather than flying above area that we know
contains no targets. As for the coverage algorithm itself, it can be further improved by
flying high with small detection accuracy and then further investigating only smaller areas
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of interest. Depending on competition specs different measures of efficiency and accuracy
should be implemented in order to give our object detection and localization algorithms as
much data to work with as possible.

(4) General object detection — For now we can only detect square images with characteristic
drawings on them. It would be great to detect and localize arbitrary objects. The first
step is detecting orange markers showing the borders of the search zone. This task, while
an intermediate step between our current work and general detection, is important to
detect the search area in our task and therefore make the coverage more efficient. While
ML object detection algorithms should work, the localization part can get tricky as our
algorithms assume the targets are squares. A small redesign should be made, preferably
placing simplicity over accuracy, as we don’t need precise locations of the orange markers,
just a general estimate.

6 Conclusion

In summary, we built a prototype drone to detect and localize target objects. The drone is con-
structed from off-the-shelf and 3D-printed components in an affordable manner, and it utilizes GPS,
IMU, and a down-facing camera as sensors to complete its tasks. We use a combination of computer
vision algorithms to first detect the targets, then precisely place them in the camera image, and
finally localize them in the real world by calculating their precise GPS coordinates.

Our work can now be utilized by the TritonAl team, with our prototype drone being fully func-
tional and ready for further field tests. The drone can be used for this specific competition task
and potentially other tasks as well. Moreover, our algorithm can be migrated to the competition
drone and be run to complete the Search and Report task. With our algorithm demonstrating high
reliability and a precision of 1 meter, it can be used as-is to achieve a high score in the competition,
supporting our team in their pursuit of victory.

The next steps, as discussed earlier, would involve improving the object localization accuracy
and integrating the algorithm into the entire codebase ecosystem. This will further enhance the

performance and seamless integration of our solution with the overall system.
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